

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: DAA(18CS0516)

Course & Branch:B.Tech - CSE

Year & Sem: III-B.Tech & I-Sem

Regulation: R18

UNIT –I INTRODUCTION, DISJOINT SETS

1	a	What is an algorithm?	[L1][CO1]	[2M]			
	b	Write the For LOOP general format.	[L1][CO1]	[2M]			
	c	Arrange the following function in increasing order.	[L1][CO1]	[2M]			
		$n,\log n,n^2,n^3,n\log n,2^n$					
	d	Solve that $1/2n^2-3n=\theta(n^2)$.	[L3][CO1]	[2M]			
	e	List out the steps that need to design an algorithm.	[L1][CO1]	[2M]			
2	a	What is asymptotic notation? Explain different types of notations with examples?	[L2][CO1]	[6M]			
	b	Illustrate an algorithm for (i) Finding factorial of n number (ii)Sum of n natural numbers	[L2][CO1]	[4 M]			
3	Sir	nplify steps involved in performance analysis with example.	[L2][CO1]	[10M]			
4	a	What do you mean by algorithm? List some of the properties of it?	[L1][CO1]	[5M]			
	b	Apply the Master's theorem. Solve the following Recurrence relations	[L3][CO1]	[5M]			
		i) $T(n) = 4T(n/2) + n$ i000i) $T(n) = 2T(n/2) + n\log n$					
5	a	Classify the rules of Pseudo code for Expressing Algorithms?	[L2][CO1]	[7M]			
	b	Solve the given function -If $f(n) = 5n^2 + 6n + 4$ then prove that $f(n)$ is $O(n^2)$.	[L3][CO1]	[3M]			
6	a	Explain the collapsing rule for Find algorithm with example.	[L6][CO1]	[5M]			
	b	Solve the following Recurrence relation	[L3][CO1]	[5M]			
		i) $T(n) = 4T(n/3) + n^2$ ii) $T(n) = 6T(n/3) + n^2 \log n$		[10M]			
7	Estimate the recurrence relations: [L6]						
		i) $x(n) = x(n-1) + 5$ for $n > 1$, $x(1) = 0$					
		ii) $x(n) = 3x(n-1)$ for $n > 1$, $x(1) = 4$					
		iii) $x(n) = x(n/2) + n$ for $n > 1$, $x(1) = 1$ (solve for $n = 2^{k}_{1}$)					
		iv) $x(n) = x(n/3) + 1$ for $n > 1$, $x(1) = 1$ (solve for $n = 3^k$)					
8	a	Determine in steps of Union and Find algorithms with example.	[L5][CO1]	[5M]			
	b	Explain space complexity in detail.	[L2][CO1]	[5M]			
9	a	Define disjoint sets? Explain different types of disjoint sets operations with	[L2][CO1]	[6M]			
		examples?					
	b	Solve the following recurrence:	[L3][CO1]	[4M]			
		i) $T(n)=7T(n/3) + n^2$ ii) $T(n)=3T(n/2) + n$					
10	Explain two types of recurrences in detail with suitable example.[L6][C01][10]						

UNIT –II BASIC TRAVERSAL AND SEARCH TECHNIQUES, DIVIDE AND CONQUER

1	a	Define the divide and conquer method.	[L1][CO2]	[2M]						
	b	Give the recurrence relation of divide-and-conquer.	[L1][CO2]	[2M]						
	c	List out the formulas for Strassen's matrix multiplication.	[L1][CO2]	[2M]						
	d	Write the recurrence relation for quick sort and analyze time complexity?	[L1][CO2]	[2M]						
	e	Find the In order and preorder and post order tree traversal for the following	[L1][CO2]	[2M]						
		binary tree.								
		2 3								
		4 5								
2	W	hat is divide and conquer strategy? Explain the working strategy of Binary Search	[L2][CO2]	[10M]						
	and	d find element 60 from the below set by using the above technique: { 10, 20,								
	30,40,50, 60,70}. Analyze time complexity for binary search.									
3		alyze the working strategy of merge sort and illustrate the process of merge sort	[L4][CO2]	[10M]						
	alg	orithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.								
4		[9467] [7621]	[L6][CO2]	[10M]						
	A=	$\begin{bmatrix} 7 & 8 & 1 & 4 \\ 4 & 3 & 2 & 6 \end{bmatrix} B = \begin{bmatrix} 3 & 9 & 0 & 3 \\ 2 & 5 & 2 & 9 \end{bmatrix}$. Create Stassen's matrix multiplication on A								
	11-									
	and	d B find the Resultant matrix								
5	a	Sort the records with the following index values in the ascending order using quick	[L2][CO2]	[5M]						
		sort algorithm. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6.								
	b	Write and explain the control abstraction for Divide and conquer.	[L2][CO2]	[5M]						
6		plain the Strassen's algorithm for matrix multiplication and analyze time	[L5][CO2]	[10M]						
	col	mplexity.								
7	Ех	[L5][CO2]	[10 M]							
	example.									
	$(A) \longrightarrow (B) \longrightarrow (C) \longrightarrow (G)$									
		$(\mathbf{D}) \longrightarrow (\mathbf{F}) \longleftarrow (\mathbf{E})^{\mathbf{L}}$								
8	SII	mmarize an algorithm for quick sort. Provide a complete analysis of quick sort for	[L2][CO2]	[10M]						
o		ven set of numbers 12, 33, 23, 43, 44, 55, 64, 77 and 76.		[TOTAT]						
9		aborate BFS algorithm and trace out minimum path for BFS for the following	[L6][CO2]	[10M]						
,		ample.								
	UN	ampro.								
		$A \longrightarrow B \longrightarrow C$								
		G								
10	a	Compare between BFS and DFS techniques.	[L4][CO2]	[4M]						
	b Solve an algorithm for techniques of binary trees with examples.[L3][CO2][6]									

UNIT –III GREEDY METHOD, DYNAMIC PROGRAMMING

r						יע, עי	INAN	IC PR	UGKA	AMMING		
1									[L1][CO3]	[2M]		
	b Write the general algorithm for Greedy method control abstraction.c What is Knapsack problem?								[L1][CO3]	[2M]		
	c	1	<u>+</u>	?							[L1][CO3]	[2M]
	d	Define optim									[L1][CO3]	[2M]
2	e Co		nic programmi		V	nac a1-	mr = 1-1		aara	-7 M 15 1	[L1][CO3]	[2M]
2	Construct an optimal solution for Knapsack problem, where $n=7$, $M=15$ and $(n_1, n_2, n_3, n_4, n_5, n_6, n_7) = (10.5, 15, 7, 6, 18, 3)$ and $(m_1, m_2, m_3, m_4, m_5, m_6, m_7) = (2.3, 5, 7, 1, 4, 1)$									[L3][CO3]	[10M]	
	(p1,p2,p3,p4,p5,p6,p7)=(10,5,15,7,6,18,3)and(w1,w2,w3,w4,w5,w6,w7)=(2,3,5,7,1,4,1) by using Greedy strategy.								, ,-(2,3,3,7,1,4,1)			
3	•	plain any one a	~ ·	greedv	metho	d with	an exa	ample?			[L2][CO3]	[10M]
4			**					-		e given the jobs,	[L6][CO3]	[10M]
		ir deadlines an										
		ofit.	P									
		Γ								7		
			Jobs	J1	J2	J3	J4	J5	J6			
		-	Deadlines	5	3	3	2	4	2			
		-	Profits	200	180	190	300	120	100	-		
5	а	Explain in de	tail about gree	dv met	thod ar	ıd its a	 .pplicat	ions.			[L2][CO3]	[5M]
-	b		algorithm for l	•			. .		me cor	mplexity.	[L4][CO3]	[5M]
6	-									test path between	[L6][CO3]	[10M]
		pairs of vertice	-			-				1		
			- •	_	-		_					
			(D-	4	ŧ	-2)				
					8	/	< T					
				5	5	12	· .	5				
						$\overline{}$		-				
	(4 -7- 3)											
7	Apply the minimum spanning tree of the following graph using Kruskals algorithm and							als algorithm and	[L3][CO3]	[10M]		
	prims algorithm .											
			4					×				
			8	/~	Š			10				
	h - g - f											
8	Explain 0/1 knapsack problem by using dynamic programming with an examples.							1	[L2][CO3]	[10M]		
9	Analyze the minimum cost tour forgiven problem using travelling sales person						s person	[L4][CO3]	[10M]			
	Concepts.											
	10											
			Î		20	13						
			6 1	5 9	\gg	\leq	8	10				
					9	3						
			3)-			4					
	12											
10	Build any one application of dynamic programming with an example.								[L6][CO1]	[10M]		

UNIT –IV BACKTRACKING, BRANCH AND BOUND

1	a	State Sum of Subsets problem.	[L1][CO4]	[2M]				
1	b	What is graph coloring?	[L1][CO4]	[2M]				
	c	Define state space tree.	[L1][CO4]	[2M]				
	d	Define Branch-and-Bound method.	[L1][CO4]	[2M]				
	e	Choose the searching techniques that are commonly used in Branch-and-Bound	[L1][CO4]	[2M]				
		method.						
2	Ex	plain sum of subsets by using backtracking with an example.	[L5][CO4]	[10 M]				
3	Di	scuss the Hamiltonian cycle algorithm with step by step operation with example.	[L6][CO4]	[10M]				
4	a	Explain the principles of FIFO branch and bound.	[L2][CO4]	[5M]				
	b	Recall the graph coloring. Explain in detail graph coloring with an example.	[L5][CO4]	[5M]				
5	a	Explain the properties of LC-search.	[L2][CO4]	[5M]				
	b	Give brief description about the general method of branch and bound.	[L2][CO4]	[5M]				
6	Se	lect any one application of backtracking with an example.	[L3][CO4]	[10 M]				
7	Co	onstruct the LC branch and bound search. Consider knapsack instance n=4 with	[L6][CO4]	[10M]				
	ca	pacity M=15 such that $pi=\{10,10,12,18\}$, $wi=\{2,4,6,9\}$ apply LC branch and bound						
		chnique.						
8	Si	mplify 0/1 knapsack problem and design an algorithm of LC Branch and Bound and	[L4][CO4]	[10M]				
	find the solution for the knapsack instance of $n = 4$,(p1, p2, p3, p4) = (10, 10, 12, 18),							
		1,w2, w3, w4) = (2, 4, 6, 9) and $M = 15$.						
9	Ev	aluate 0/1 knapsack problem using branch and bound with an example.	[L5][CO4]	[10M]				
10		stinguish in detail 8-queens problem using back tracking with state space tree.	[L4][CO4]	[10M]				
10	וע	stinguish in uctan o-queens problem using back tracking with state space tree.						

UNIT –V NP-HARD AND NP-COMPLETE PROBLEMS

1	a Define class P.	[L1][CO5]	[2M]			
	b Define NP- hard problem.	[L1][CO5]	[2M]			
	c What is Non-deterministic algor	[L1][CO5]	[2M]			
	d What is a decision problem?		[L1][CO5]	[2M]		
	e Define NP.		[L1][CO5]	[2M]		
2	Construct the non-deterministic algorithms with example. [L3][C					
3	Distinguish between deterministic a	[L4][CO5]	[10 M]			
4	Construct the non-deterministic sorting algorithm and also analyze its complexity. [L6][CO5] [
5	Explain the class of P and NP with example?[L2][CO5][1					
6	Differentiate between NP- complete and NP-hard problems? [L4][CO5]					
7	State and explain cook's theorem? [L2][CO5] [
8	Estimate the strategy to prove that a problem steps of NP-hard. [L6][CO5] [
9	Illustrate the satisifiability problem	and write the algorithm.	[L2][CO5]	[10M]		
10	Determine the classes NP-hard and NP-complete problem with example. [L5][CO5] [10					

Prepared by: Dr.S.Tamilselvan, Associate Professor/CSE Dr.J.Manikandan, Professor/CSE Ms.Neelam Poornima, Assist.Professor/CSIT